A Really, Really, Ridiculously Big Number
1. When 44444444 is written in decimal notation, the sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B. (A, B are written in decimal notation.)
2. What is the largest number that can be obtained as the product of positive integers that add up to 100?
Source: unknown
1. When 44444444 is written in decimal notation, the sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B. (A, B are written in decimal notation.)
2. What is the largest number that can be obtained as the product of positive integers that add up to 100?
Source: unknown
A Really, Really, Ridiculously Big Number Solution
1. When 44444444 is written in decimal notation, the sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B. (A, B are written in decimal notation.)
First, let me say this: whenever you see "sum of digits in decimal notation", think: mod 9. That's because if A=k (mod 9) then the sum of digits of A will also be equivalent to k (mod 9). That's because whenever you add 1 to A, you increase one of its digits by 1, and if there's a carry, you reduce one or more of its digits by 9. The net change to the sum of the digits is always +1 (mod 9).
Now, let Z = 44444444,
and let A = SumOfDigits(Z),
and let B = SumOfDigits(A),
and let C = SumOfDigits(B).
The puzzle asks us to find C.
Let's work in mod 9. 4444 = 7 (mod 9), and 73 = 343 = 1 (mod 9), so 44443 = 1 (mod 9)
Z = 44444444 = 4444(3*1481+1) = (44443)1481*4444
= 11481*7 = 7 (mod 9)
Suppose C is 13 or larger. Then, since 4+9=13, B is at least 49. Then, since 4+9+9+9+9+9=49, A is at least 499999. Then, since
4+9+9+...+9=499999 (there are 55,555 9's in that sum), A is at least 1055555, which is 10000011111, which is larger than 44444444.
So C must be smaller than 13.
Remember Z = 7 (mod 9), and Z = A = B = C (mod 9), so C = 7 (mod 9).
And since C is smaller than 13 (and larger than 0), it follows that C must be 7.
2. What is the largest number that can be obtained as the product of positive integers that add up to 100?
332*22 = 7,412,080,755,407,364. First, it is clear that the numbers should be as similar as possible.
That's because, given x+y is constant, the product xy is maximized when x=y.
If the numbers weren't restricted to just integers, then the problem would be to maximize f(x)=x100/x, so I would start by finding its derivative.
f'(x)=x100/x(100/x2)(1-ln(x))
Letting f'(x)=0, and solving for x, I see that log(x)=1, so x=e. But we're restricted to integers, and the closest integers to e are 2 and 3. I see that 32 > 23, so I will try to use as many 3's as possible. 333*1 is the answer that comes to mind first, but I see that the 3*1 at the end of that can be replaced by 2*2 to increase the value, so my final answer is 332*22.
More about this puzzle:
More about question 2. e100/e is about 9,479,842,689,868,760, which is only about 28% bigger than the largest value obtained by multiplying integers together. Note that 2.7*37=999, so a relatively close approximation to e100/e is 2.737, which is 3111/1037, or 9,129,758,166,511,361.1259115979754590511595360241199911147
More about question 1. Is 7 really the right answer to the first problem? Using a high-powered calculator, I found that 44444444 is:
51036325037255080482040250195524395924782475482284
51474782897598673947907686253161583300186402719787
54341724967822128103609369988148710280232804095176
04289704232997250059817651452033902564981053474342
14398243447701005507790297138587957809702679504701
39272104480697376125997353628941946453523996923610
78824902286318374845566910211826792995098340076750
26127520738056469675750825886610949248900802705474
56803873740320864945594128706961297090655436915863
34825135439896393158947581127115655037247166912914
51231939073859064049863419562587944620889495591463
50345399163827981962134779340382384424895186433898
19322763837231638995434876736816619770138446121390
71388852279153694690363445963220228368583217271684
24358555102814557399060684717742075384722330426026
54906987502020125355985174905073230021003332170469
14024723724479106015117927670688740417300368305571
10615658104625761306167498567997810021103568436403
53389697516105223217210103014498528306981517615490
24868460666734522447434820912169127300631113175189
49438036825849350857407802947251358813009101396855
00678650664234655503263565369409930765042230344332
92260836816038877878888464678393171791455641266368
11320178100178767560802374959861806281497780756306
81683591162326934481582867517270565879385831508832
17908520286979791362343939136178910953408397333386
86673739833179826385728366945887902638785310573219
76457926706035794868607608000143128674258835749966
11071364880755016464201019526239818393725828422645
18761810504053478242632314184897970895306059628730
18298377904732924409245273472327709725894372282581
05810552476866383413945819151963074458933441090348
17778611768891723897294599389140932783799232490775
05369097142894400504292204972847535451294121869487
52272827442038083294440960887558282886782895419734
57669897362717522625740525241209076777138412674147
23824130389733862221839461701104193136612118363646
18234378036753392479855231434544063941653293576691
03653264760640010626504399789860126139878369534468
23328289018854743984831229989513368552344528366528
94666827745095657966447669869888507060852886890811
14469902960360827072954224374982101260182453171869
40472025919131910253989876920575814124256871659639
32022122407738557835263357184942947527643118929209
07493025550412099220233329516515434443312992267635
35432904707263476043787719983745748717480573667954
49524631191662492194389020239551818543132076798858
08479477769153254646442991950130412202102056337083
18303125892843920543505189879552980904823153381789
68232196707525354374529285185809434241380450228318
63716025460572384581170435444180573841209435325801
55301403058643552474493180342399235704855733869062
28742502348473579676973954460218254574288448819364
20409112984246951093081871735950236727834928092629
68798087358959434038837430012625131591133659217967
82361134740595852452676107593385648640641849805123
22210830113212125001320463932372420137129204933733
44264333908560825994557724645284878202710188644471
61785631330871642450561780050751153777928150071183
01209059106609212534829939439550083802954225295975
30517295272711434751373008436807762561135017027186
24768803200927258170443613254615513472147388082507
91771609552237806772196784335027297002780744019261
82830254603399513829993142929857388403374970772760
87416939470986856451165988209705543499124219290555
73051210436261314483586571692587336252637815898825
96980551044501739635559777554180414767408625727263
39793823539261184650692343054743563963265371575979
81632993535984505026599800538473415499795364855333
74417981344585777831913637495528436408273284344143
25186079499462300236427578835789817458693380980352
99951996695497889736533233099525328238032895499659
74624000722832093785514980924652516482515851200807
08196969990646665189216965555737365715285115785268
47049186820114774891560697237812276661684208813207
35023475233908968720310190825736586213239037243220
04865757880536094401644078100662660882874316130371
25743755776499332255326510505451400418740177410235
08427656767689065668130401769027151944649429611356
50862241963649784361683973337887356842312535977187
36068352054227927317277575609948515022237327344747
06040309843864498501849591435827118166412237796262
10013989202569008429332701031225764519766354595127
06077743918298807282211060933129032411966150842234
06747347511355606911250776846847504818687953378149
56399921113519226758865239003554453237732919807191
53140309574930590076926928748876531244271081769275
64311114294162352327908126401618689986841523872090
87230273480151388668919312581666051199165800486441
85359531894350720457844553793284881527202921358753
59370818523073632235999955560096920959353029918712
65048050357900816996264205311228238720651116915073
99768235772890863694411669952563678279234378354191
23223095040378846316251345016228949289846720433174
61993756045537859631553296838524316469356065751648
49441486959653244888497100572932455944930541441253
01383618793154325438553456395029494822177859020897
21535098259284427404635331809160561496511820089880
41143838260694069648478204366156436222610684389636
17832290603017594755753950537202287361798424395102
76132562874051149340010817121271870900538251197889
89080611268989330588802195554395769747383821132164
37342135362672263231535922196636242632966267617797
78234962076654951909120587740700304612400650030922
20340537343718570855540620048409268326524679210802
08750743403635646914790187985334984952875123511778
00185710306124538624908276346171684319237848961831
79449981200363313180926520060126551306823724759872
91362466779491036392406652011434125908300172201075
45930141396706406379312681280708386422117719450505
61366525808447449525508938166264765199363228621927
07218970681132239377168147183801211896926748464951
76959745099855186807071863571180666691557991007019
88974256529993495874624045316311204642297383793009
20201111657804964599629952724701542323391985340968
67286006066963303427522567415561858818264102457439
10628657465890175496712102421356923202769091923564
49001140429332424010168704728232320210929716937724
67674980038137617059600306942677185824529032560790
10815263681093166687630969971263631812458135072442
80366466648932281278126373785395043601786432763709
03070205024013382898639088038527398692956972045807
25170967950273054710859386688076546989480156225735
46046818183483574210076476424314126971168689392674
12150910191824650495599388431520928200130171902196
63210133959764969916921424252235350879175655965074
35924991158667497528161617132634459787384459450622
41172330248066415406556053193408520093501247929286
78045375043305787969401533058658577784702110058820
87304011121903516957099176167592117789488946853013
04552737512486706568604303842632285781336680301578
62941456322480013374596884836912573446677568088107
63951697589291515089178471233746391308443723682518
27997933771835930906060269369033056012127425470105
86743480914239324734713980905028430385523359854433
03218444128273168445461544525875847301549067496633
45496641028982920703923713119949632098286432311475
82776870795894821273070188389094730863614701744251
55605416098610793082610666882657741882553093188048
48617643450161495549550819622829958383583967550253
23325237626964638041296782788590824826422727422220
97523888921494943635753659083340054406237245675282
50163243316691081914000483567266462625465694510019
81776097267617939387449987641322556098368412812319
01889255720627632431524563414335794855387940638983
92157866857282062636536933248629871066383835278632
61567494687265838171267738381407758668688547504101
64553462469660109474243903272165419456237431085185
44899586638918932868402607914610120955885411151278
44235136538460494218443157067944730175087192993312
62442774780215604164214935781680800812113054855039
73969553588968922298314517655337893181347680818018
17977461751273626572631728585325274453307954536308
17313353805947445272602272859755128165350245699909
28279081235014238973953200166526410614520349431506
07140775723776511461157873123070225120644493402414
37064714428811461627661296148383624217245891852900
46088836410040684215782177934284279935593151231471
84801993412849898061920642450137318029403201693149
21465098996439607567827091299243886276832382975543
75807096311778949062465846167758183047054719858165
27141639179818031610398693812474409962052138431790
71365997185244849515709324465993580039825588779376
40382619629537673398091803476018659432786896430016
30720709936676081371984397458946228309646705773570
68140987913016472869332701745194728354414343987240
77519718387218455099757571179328376524834569679854
41877513426120450808526283220211679771319126130386
25008119849405429846694204887183172236242862288336
79094771214906190122069146305465508936400689876628
07001110340851060691959426999963862577000562601749
25237978902361628738183989737266536727656590186430
08643410406689955598497043062669911339342775938753
57496825654857687334419768840125729405968561088870
84493032729826238476610059812287841531681857742998
66462325859291903485003475620155889277543198895554
59405117171589505549548603459590457102963464754770
63086888136584311637100547898320415124284265050681
61105150988954540112065162443912214976496396858657
46613599904551431103519132165219232384299800607864
70727081816974969662410355488759308751155688931603
17567583836193538432689661991040144993512953812281
76728712840020692736576749241487597155459015209477
99114857656365404517318216715752365065243367980748
87068255342495799418247247771372142841234850010132
31934374317705614812937715358157097006856010189887
49699883796533380321551925970404211930703722814870
14738304302435089907612783934505587181870491500702
27746230795835272945695192813801661478856551200048
08523674310827725908874355002546657148457905053710
32347103281992340947593930321523400969614546891287
78454441574287057253242698451188733074647504327021
22363395708402813809266954445176416954050680390634
40421072166927014811035974591317906062301218379603
42414421798646166376953985812781004432515136901901
81608320197277957618618586103065843536903624585752
72112307285748440700188469576310414185227778797233
15780076759745475345730519516759062877662320090774
77009546299446114266148470853908985123009587555416
97242022190375735995080872111971894520284073146272
60749504567266073693108004555234317743504422137640
16387077276359397016795922323725222901757153393011
00206091002962644063617623963195067508944029487840
12098675844965754797116894283922430025057421112855
96689605354395073160765101186669200734842212683905
35867042909945624326225320700619413552855083144377
46978402707297657638654017049655265901547263449923
20309370696654772892880071351360611510079210660932
42397113839931143142160610784027729930827368165070
61936850312048734156261238717880978316149648375907
50823014964899520356299704559323275867818027880127
17848697162182627830374745644626957486613912963910
93587383772764221555943264382261691158777104364156
45241987304828870116028499639671621994432850792792
26573501959999356692388474740216298441483726547464
54223562660023197804247801478409698851402373918628
16439274529266133603892293872737639942238386916549
50505662208308341592860460520765907862392254753964
31376074744643198686827741080460366313325603313273
00717805862387838377162637617721381297418828788660
00078183105636113277325893451166251004988169886190
00024256383220340839395179940434782277287242958189
45414834121714638146161878458019249031232371077414
06040246842237193714971568122227539811648001031471
35586252155966164682132103745174438500917158430799
31522392153420229680048107366236906295197876902156
23469993234902731927691618605832989157341431393042
81395556079191851901923890260567549299793028539587
02886809773264745270796960183896245081350167326097
76361603964875371872504383060419457341568655660090
48704742810977702327159936127934529837514960485494
62024037030844508461707716072580399971349621270052
73713783365810507564315527290759563444339742146971
06495892624784424745667246559692371205678451734184
87762529440470229826695351272351294187278674957707
50257967011376208848602892778419937045634787869136
44331627777447868709210311065184258448479318023185
62143332162520586346376456214070002688736307063902
63855914876278888534315895615179716010722966153573
32364869067624440673574747009976891017981618214285
99649047752008815011514252844401816390424939585076
20577058913000489364548364120558485588343774421970
32657345585148912673670805662671772888568059299985
42256170860899494621508896364262009894660347512295
25756485682489086338243428951595411943509645726463
41636442369163573903003782495167033324413687950616
03944615807261982939505169099549073403188197221152
63755159779795189968380244999240972142897518333457
82426660635179893407799888314722549463860475427802
45023658860765336496396822462566380797706697056663
26740724223544945853427465154957903874345391506027
76988858229735655861557651674001429316812089608995
20371746560263829733583002620608328776408718158974
09791275586730161667317287275941807666477118086515
96317982891783035329753478950352445364900258981354
68963734500935569457512018474988806072324386391061
09519361730056320634907342162013172884291365790324
64035716839534252040508785673480505630903894041726
21103208845718114249781810625452672558925511250819
36071959522167200786228198489644496325434412378749
78490243071729405207331495733130755576599258176645
18441365261903347584532027572313309166188768274469
43889779739496956035564321128291929808081769030238
29310523482069263212389044541984581188822108448228
21363250357160391035907409711016857753591754468457
68867808832148246173120044543076836904691359166476
73600895619287100852479274514718735961487520213131
32678954452831023222988644694023933547158459272958
96429539837611579991081941764782896967745403273336
05367236832142391708012075406579173957670795207347
06539336317218188133109617778494291033280332817298
84400942876253137961209014566503868151033191704425
36811615087008471193339589052960764990223566273656
28010677726414340197056935602884040529960714256615
14531840463429712790760446537642982115587108107866
58605274648781748285205067558818036413064385565389
29542141958276824040748103136131211043691875023167
07527882261434373379614719087316903220505726066034
40510676704297919927686521219130125218950599545519
34047574800474904940010386563480489601958856487597
74803553626664885374261696124793431246525774591973
58631901575315854308341312803980723202129664383827
26175971311473127537745975213829044332350770984210
52529918570895335151686585894661292684098239817315
42952356143715863169688684913604967008122125957014
39490210485473139451398738165361282564989954513670
43562992336123776631389496266747640038121216579773
06678745170276873751160514032821915716429568516507
44922280646722074409834586593409233415022286762159
45932834722289955924278621977957993088300919372049
15079889971514885557496709573603777051495031850777
15180665444890518474846889711571541722584536374641
56967335622083021890718740070366182071074415979514
54303526060155866158129219539869907497123714993226
37865469171905713409497806437169004073344390361842
50199857057622900599304842023909646630800344856101
78913407961674760734091433100367709483574035959297
28871809533713636885391034647953563506410771549598
66977060741861235448649304829825794832488709285428
03999968905753081412480910086843663913543506746354
84268923258256874102915532038525363411814408562397
59829028494826419730560703152753714978661142313311
81371665920481113272375212038192132968221907113844
63234160193281284038243499433934205984075209327378
31436335073428470387243254244004777354562126305005
92361216096449533848430661580040552681311951624165
97382498798221282586951443827655466888011743230631
17490166832735883314935676447302263184451587052279
48243142372339416050952158123772187188264284208787
93242691427557719645257656471723055812922503746623
90106143667681610429029041195604156544722453982341
53378437189072083149763584631301136544692903363054
97409416174328035261292190893517872125591526291255
13240223959733696389407503366347400147766694426415
39386607106732040986806691541249305380199302700473
06104736552258986276965824647429655406555391473259
06404433102622223679309020807145492720454009830977
08233622342518619774212788950890705639865993324699
31277104734673626799143422660333436774839058609616
83867911949216631258560268654629954816391841992863
67450171422599541873555868876360035680842412214786
21695307152384094531375297756356083583426234545493
92629561201761852794970846395294550517324778732542
29944676787432793704168268693472459216355092447410
66157981696
The sum of these 16211 digits is 72601 = A. The sum of 7+2+6+0+1 is 16 = B, so C is 7.
1. When 44444444 is written in decimal notation, the sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B. (A, B are written in decimal notation.)
First, let me say this: whenever you see "sum of digits in decimal notation", think: mod 9. That's because if A=k (mod 9) then the sum of digits of A will also be equivalent to k (mod 9). That's because whenever you add 1 to A, you increase one of its digits by 1, and if there's a carry, you reduce one or more of its digits by 9. The net change to the sum of the digits is always +1 (mod 9).
Now, let Z = 44444444,
and let A = SumOfDigits(Z),
and let B = SumOfDigits(A),
and let C = SumOfDigits(B).
The puzzle asks us to find C.
Let's work in mod 9. 4444 = 7 (mod 9), and 73 = 343 = 1 (mod 9), so 44443 = 1 (mod 9)
Z = 44444444 = 4444(3*1481+1) = (44443)1481*4444
= 11481*7 = 7 (mod 9)
Suppose C is 13 or larger. Then, since 4+9=13, B is at least 49. Then, since 4+9+9+9+9+9=49, A is at least 499999. Then, since
4+9+9+...+9=499999 (there are 55,555 9's in that sum), A is at least 1055555, which is 10000011111, which is larger than 44444444.
So C must be smaller than 13.
Remember Z = 7 (mod 9), and Z = A = B = C (mod 9), so C = 7 (mod 9).
And since C is smaller than 13 (and larger than 0), it follows that C must be 7.
2. What is the largest number that can be obtained as the product of positive integers that add up to 100?
332*22 = 7,412,080,755,407,364. First, it is clear that the numbers should be as similar as possible.
That's because, given x+y is constant, the product xy is maximized when x=y.
If the numbers weren't restricted to just integers, then the problem would be to maximize f(x)=x100/x, so I would start by finding its derivative.
f'(x)=x100/x(100/x2)(1-ln(x))
Letting f'(x)=0, and solving for x, I see that log(x)=1, so x=e. But we're restricted to integers, and the closest integers to e are 2 and 3. I see that 32 > 23, so I will try to use as many 3's as possible. 333*1 is the answer that comes to mind first, but I see that the 3*1 at the end of that can be replaced by 2*2 to increase the value, so my final answer is 332*22.
More about this puzzle:
More about question 2. e100/e is about 9,479,842,689,868,760, which is only about 28% bigger than the largest value obtained by multiplying integers together. Note that 2.7*37=999, so a relatively close approximation to e100/e is 2.737, which is 3111/1037, or 9,129,758,166,511,361.1259115979754590511595360241199911147
More about question 1. Is 7 really the right answer to the first problem? Using a high-powered calculator, I found that 44444444 is:
51036325037255080482040250195524395924782475482284
51474782897598673947907686253161583300186402719787
54341724967822128103609369988148710280232804095176
04289704232997250059817651452033902564981053474342
14398243447701005507790297138587957809702679504701
39272104480697376125997353628941946453523996923610
78824902286318374845566910211826792995098340076750
26127520738056469675750825886610949248900802705474
56803873740320864945594128706961297090655436915863
34825135439896393158947581127115655037247166912914
51231939073859064049863419562587944620889495591463
50345399163827981962134779340382384424895186433898
19322763837231638995434876736816619770138446121390
71388852279153694690363445963220228368583217271684
24358555102814557399060684717742075384722330426026
54906987502020125355985174905073230021003332170469
14024723724479106015117927670688740417300368305571
10615658104625761306167498567997810021103568436403
53389697516105223217210103014498528306981517615490
24868460666734522447434820912169127300631113175189
49438036825849350857407802947251358813009101396855
00678650664234655503263565369409930765042230344332
92260836816038877878888464678393171791455641266368
11320178100178767560802374959861806281497780756306
81683591162326934481582867517270565879385831508832
17908520286979791362343939136178910953408397333386
86673739833179826385728366945887902638785310573219
76457926706035794868607608000143128674258835749966
11071364880755016464201019526239818393725828422645
18761810504053478242632314184897970895306059628730
18298377904732924409245273472327709725894372282581
05810552476866383413945819151963074458933441090348
17778611768891723897294599389140932783799232490775
05369097142894400504292204972847535451294121869487
52272827442038083294440960887558282886782895419734
57669897362717522625740525241209076777138412674147
23824130389733862221839461701104193136612118363646
18234378036753392479855231434544063941653293576691
03653264760640010626504399789860126139878369534468
23328289018854743984831229989513368552344528366528
94666827745095657966447669869888507060852886890811
14469902960360827072954224374982101260182453171869
40472025919131910253989876920575814124256871659639
32022122407738557835263357184942947527643118929209
07493025550412099220233329516515434443312992267635
35432904707263476043787719983745748717480573667954
49524631191662492194389020239551818543132076798858
08479477769153254646442991950130412202102056337083
18303125892843920543505189879552980904823153381789
68232196707525354374529285185809434241380450228318
63716025460572384581170435444180573841209435325801
55301403058643552474493180342399235704855733869062
28742502348473579676973954460218254574288448819364
20409112984246951093081871735950236727834928092629
68798087358959434038837430012625131591133659217967
82361134740595852452676107593385648640641849805123
22210830113212125001320463932372420137129204933733
44264333908560825994557724645284878202710188644471
61785631330871642450561780050751153777928150071183
01209059106609212534829939439550083802954225295975
30517295272711434751373008436807762561135017027186
24768803200927258170443613254615513472147388082507
91771609552237806772196784335027297002780744019261
82830254603399513829993142929857388403374970772760
87416939470986856451165988209705543499124219290555
73051210436261314483586571692587336252637815898825
96980551044501739635559777554180414767408625727263
39793823539261184650692343054743563963265371575979
81632993535984505026599800538473415499795364855333
74417981344585777831913637495528436408273284344143
25186079499462300236427578835789817458693380980352
99951996695497889736533233099525328238032895499659
74624000722832093785514980924652516482515851200807
08196969990646665189216965555737365715285115785268
47049186820114774891560697237812276661684208813207
35023475233908968720310190825736586213239037243220
04865757880536094401644078100662660882874316130371
25743755776499332255326510505451400418740177410235
08427656767689065668130401769027151944649429611356
50862241963649784361683973337887356842312535977187
36068352054227927317277575609948515022237327344747
06040309843864498501849591435827118166412237796262
10013989202569008429332701031225764519766354595127
06077743918298807282211060933129032411966150842234
06747347511355606911250776846847504818687953378149
56399921113519226758865239003554453237732919807191
53140309574930590076926928748876531244271081769275
64311114294162352327908126401618689986841523872090
87230273480151388668919312581666051199165800486441
85359531894350720457844553793284881527202921358753
59370818523073632235999955560096920959353029918712
65048050357900816996264205311228238720651116915073
99768235772890863694411669952563678279234378354191
23223095040378846316251345016228949289846720433174
61993756045537859631553296838524316469356065751648
49441486959653244888497100572932455944930541441253
01383618793154325438553456395029494822177859020897
21535098259284427404635331809160561496511820089880
41143838260694069648478204366156436222610684389636
17832290603017594755753950537202287361798424395102
76132562874051149340010817121271870900538251197889
89080611268989330588802195554395769747383821132164
37342135362672263231535922196636242632966267617797
78234962076654951909120587740700304612400650030922
20340537343718570855540620048409268326524679210802
08750743403635646914790187985334984952875123511778
00185710306124538624908276346171684319237848961831
79449981200363313180926520060126551306823724759872
91362466779491036392406652011434125908300172201075
45930141396706406379312681280708386422117719450505
61366525808447449525508938166264765199363228621927
07218970681132239377168147183801211896926748464951
76959745099855186807071863571180666691557991007019
88974256529993495874624045316311204642297383793009
20201111657804964599629952724701542323391985340968
67286006066963303427522567415561858818264102457439
10628657465890175496712102421356923202769091923564
49001140429332424010168704728232320210929716937724
67674980038137617059600306942677185824529032560790
10815263681093166687630969971263631812458135072442
80366466648932281278126373785395043601786432763709
03070205024013382898639088038527398692956972045807
25170967950273054710859386688076546989480156225735
46046818183483574210076476424314126971168689392674
12150910191824650495599388431520928200130171902196
63210133959764969916921424252235350879175655965074
35924991158667497528161617132634459787384459450622
41172330248066415406556053193408520093501247929286
78045375043305787969401533058658577784702110058820
87304011121903516957099176167592117789488946853013
04552737512486706568604303842632285781336680301578
62941456322480013374596884836912573446677568088107
63951697589291515089178471233746391308443723682518
27997933771835930906060269369033056012127425470105
86743480914239324734713980905028430385523359854433
03218444128273168445461544525875847301549067496633
45496641028982920703923713119949632098286432311475
82776870795894821273070188389094730863614701744251
55605416098610793082610666882657741882553093188048
48617643450161495549550819622829958383583967550253
23325237626964638041296782788590824826422727422220
97523888921494943635753659083340054406237245675282
50163243316691081914000483567266462625465694510019
81776097267617939387449987641322556098368412812319
01889255720627632431524563414335794855387940638983
92157866857282062636536933248629871066383835278632
61567494687265838171267738381407758668688547504101
64553462469660109474243903272165419456237431085185
44899586638918932868402607914610120955885411151278
44235136538460494218443157067944730175087192993312
62442774780215604164214935781680800812113054855039
73969553588968922298314517655337893181347680818018
17977461751273626572631728585325274453307954536308
17313353805947445272602272859755128165350245699909
28279081235014238973953200166526410614520349431506
07140775723776511461157873123070225120644493402414
37064714428811461627661296148383624217245891852900
46088836410040684215782177934284279935593151231471
84801993412849898061920642450137318029403201693149
21465098996439607567827091299243886276832382975543
75807096311778949062465846167758183047054719858165
27141639179818031610398693812474409962052138431790
71365997185244849515709324465993580039825588779376
40382619629537673398091803476018659432786896430016
30720709936676081371984397458946228309646705773570
68140987913016472869332701745194728354414343987240
77519718387218455099757571179328376524834569679854
41877513426120450808526283220211679771319126130386
25008119849405429846694204887183172236242862288336
79094771214906190122069146305465508936400689876628
07001110340851060691959426999963862577000562601749
25237978902361628738183989737266536727656590186430
08643410406689955598497043062669911339342775938753
57496825654857687334419768840125729405968561088870
84493032729826238476610059812287841531681857742998
66462325859291903485003475620155889277543198895554
59405117171589505549548603459590457102963464754770
63086888136584311637100547898320415124284265050681
61105150988954540112065162443912214976496396858657
46613599904551431103519132165219232384299800607864
70727081816974969662410355488759308751155688931603
17567583836193538432689661991040144993512953812281
76728712840020692736576749241487597155459015209477
99114857656365404517318216715752365065243367980748
87068255342495799418247247771372142841234850010132
31934374317705614812937715358157097006856010189887
49699883796533380321551925970404211930703722814870
14738304302435089907612783934505587181870491500702
27746230795835272945695192813801661478856551200048
08523674310827725908874355002546657148457905053710
32347103281992340947593930321523400969614546891287
78454441574287057253242698451188733074647504327021
22363395708402813809266954445176416954050680390634
40421072166927014811035974591317906062301218379603
42414421798646166376953985812781004432515136901901
81608320197277957618618586103065843536903624585752
72112307285748440700188469576310414185227778797233
15780076759745475345730519516759062877662320090774
77009546299446114266148470853908985123009587555416
97242022190375735995080872111971894520284073146272
60749504567266073693108004555234317743504422137640
16387077276359397016795922323725222901757153393011
00206091002962644063617623963195067508944029487840
12098675844965754797116894283922430025057421112855
96689605354395073160765101186669200734842212683905
35867042909945624326225320700619413552855083144377
46978402707297657638654017049655265901547263449923
20309370696654772892880071351360611510079210660932
42397113839931143142160610784027729930827368165070
61936850312048734156261238717880978316149648375907
50823014964899520356299704559323275867818027880127
17848697162182627830374745644626957486613912963910
93587383772764221555943264382261691158777104364156
45241987304828870116028499639671621994432850792792
26573501959999356692388474740216298441483726547464
54223562660023197804247801478409698851402373918628
16439274529266133603892293872737639942238386916549
50505662208308341592860460520765907862392254753964
31376074744643198686827741080460366313325603313273
00717805862387838377162637617721381297418828788660
00078183105636113277325893451166251004988169886190
00024256383220340839395179940434782277287242958189
45414834121714638146161878458019249031232371077414
06040246842237193714971568122227539811648001031471
35586252155966164682132103745174438500917158430799
31522392153420229680048107366236906295197876902156
23469993234902731927691618605832989157341431393042
81395556079191851901923890260567549299793028539587
02886809773264745270796960183896245081350167326097
76361603964875371872504383060419457341568655660090
48704742810977702327159936127934529837514960485494
62024037030844508461707716072580399971349621270052
73713783365810507564315527290759563444339742146971
06495892624784424745667246559692371205678451734184
87762529440470229826695351272351294187278674957707
50257967011376208848602892778419937045634787869136
44331627777447868709210311065184258448479318023185
62143332162520586346376456214070002688736307063902
63855914876278888534315895615179716010722966153573
32364869067624440673574747009976891017981618214285
99649047752008815011514252844401816390424939585076
20577058913000489364548364120558485588343774421970
32657345585148912673670805662671772888568059299985
42256170860899494621508896364262009894660347512295
25756485682489086338243428951595411943509645726463
41636442369163573903003782495167033324413687950616
03944615807261982939505169099549073403188197221152
63755159779795189968380244999240972142897518333457
82426660635179893407799888314722549463860475427802
45023658860765336496396822462566380797706697056663
26740724223544945853427465154957903874345391506027
76988858229735655861557651674001429316812089608995
20371746560263829733583002620608328776408718158974
09791275586730161667317287275941807666477118086515
96317982891783035329753478950352445364900258981354
68963734500935569457512018474988806072324386391061
09519361730056320634907342162013172884291365790324
64035716839534252040508785673480505630903894041726
21103208845718114249781810625452672558925511250819
36071959522167200786228198489644496325434412378749
78490243071729405207331495733130755576599258176645
18441365261903347584532027572313309166188768274469
43889779739496956035564321128291929808081769030238
29310523482069263212389044541984581188822108448228
21363250357160391035907409711016857753591754468457
68867808832148246173120044543076836904691359166476
73600895619287100852479274514718735961487520213131
32678954452831023222988644694023933547158459272958
96429539837611579991081941764782896967745403273336
05367236832142391708012075406579173957670795207347
06539336317218188133109617778494291033280332817298
84400942876253137961209014566503868151033191704425
36811615087008471193339589052960764990223566273656
28010677726414340197056935602884040529960714256615
14531840463429712790760446537642982115587108107866
58605274648781748285205067558818036413064385565389
29542141958276824040748103136131211043691875023167
07527882261434373379614719087316903220505726066034
40510676704297919927686521219130125218950599545519
34047574800474904940010386563480489601958856487597
74803553626664885374261696124793431246525774591973
58631901575315854308341312803980723202129664383827
26175971311473127537745975213829044332350770984210
52529918570895335151686585894661292684098239817315
42952356143715863169688684913604967008122125957014
39490210485473139451398738165361282564989954513670
43562992336123776631389496266747640038121216579773
06678745170276873751160514032821915716429568516507
44922280646722074409834586593409233415022286762159
45932834722289955924278621977957993088300919372049
15079889971514885557496709573603777051495031850777
15180665444890518474846889711571541722584536374641
56967335622083021890718740070366182071074415979514
54303526060155866158129219539869907497123714993226
37865469171905713409497806437169004073344390361842
50199857057622900599304842023909646630800344856101
78913407961674760734091433100367709483574035959297
28871809533713636885391034647953563506410771549598
66977060741861235448649304829825794832488709285428
03999968905753081412480910086843663913543506746354
84268923258256874102915532038525363411814408562397
59829028494826419730560703152753714978661142313311
81371665920481113272375212038192132968221907113844
63234160193281284038243499433934205984075209327378
31436335073428470387243254244004777354562126305005
92361216096449533848430661580040552681311951624165
97382498798221282586951443827655466888011743230631
17490166832735883314935676447302263184451587052279
48243142372339416050952158123772187188264284208787
93242691427557719645257656471723055812922503746623
90106143667681610429029041195604156544722453982341
53378437189072083149763584631301136544692903363054
97409416174328035261292190893517872125591526291255
13240223959733696389407503366347400147766694426415
39386607106732040986806691541249305380199302700473
06104736552258986276965824647429655406555391473259
06404433102622223679309020807145492720454009830977
08233622342518619774212788950890705639865993324699
31277104734673626799143422660333436774839058609616
83867911949216631258560268654629954816391841992863
67450171422599541873555868876360035680842412214786
21695307152384094531375297756356083583426234545493
92629561201761852794970846395294550517324778732542
29944676787432793704168268693472459216355092447410
66157981696
The sum of these 16211 digits is 72601 = A. The sum of 7+2+6+0+1 is 16 = B, so C is 7.