Palindrome Addition
Pro Problems > Math > Number and Quantity > Number Theory > DigitsPalindrome Addition
Find the smallest positive integer which must be added to 30504 so that the resulting number is a palindrome.
Note: a palindrome is a number in which the digits would read the same forward and backward.
Solution
In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.Similar Problems
Three Digit Difference
Two positive integers, A and B, both have 3 digits. A is bigger than B. A – B is between 300 and 400. What is the value of A - B?
Coffee Math
Johann was writing out a math problem when he spilled some coffee on his paper. The result was that some digits were covered up, as shown below.
♦7♦ + ♦♦9 ----- 50♦
If all but one of the hidden areas have the same digit, find all possible values for the sum of the hidden digits
Three Digit Number
I am thinking of a three-digit number. The sum of my digits is 17. Two of my digits add to 10, and two of my digits are the same. Find all possible values for my number.
I Have Three Digits
I am a three digit number, and the following things are true about me:
- The product of two of my digits is 8.
- The sum of my digits is 13.
- My first digit is four times my second digit.
What number am I?
Two Digit Pattern Matching
How many two-digit numbers are there such that the digits match at least one of the following patterns:
- The digits are both multiples of three.
- Neither of the digits are multiples of two.
- The digits add to 8.
- The digits are perfect squares.
Fill in the blanks
In the addition problem below, some digits are missing. They have been replaced by x and y. Find the values of x and y.
3xy2 + 3y1 = 40x3
Happy New Year
Happy New Year! I am a four-digit year, and my last two digits are a perfect square. The sum of my first and third digits is a perfect square. My second digit is a perfect square. All my digits add to a perfect square.
If you subtract my first, second, and third digit from my last digit, you get a perfect square.
If you subtract my third digit from my first digit, you get a perfect square.
Oh, by the way, I'm a perfect square.
What year am I?
Sum of Digits
Find the sum of all the integers between one and 100 which have 14 as the sum of their digits.
Set of Five Digit Numbers
S is the set of five-digit numbers such that the digits are in ascending order, there are no repeated digits, the sum of the first two digits is equal to the third digit, and the sum of the third and fourth digits is equal to the two more than the fifth digit. How many elements are in the set S? (Note that the leading digit cannot be a zero).
Three Digits with Difference
I’m a three digit number, and the sum of my digits is 13. My first two digits differ by 3, and my last two digits differ by 5. What numbers could I be?