Games
Problems
Go Pro!

Palindrome Addition

Pro Problems > Math > Number and Quantity > Number Theory > Digits
 

Palindrome Addition

Find the smallest positive integer which must be added to 30504 so that the resulting number is a palindrome.

Note: a palindrome is a number in which the digits would read the same forward and backward.

 

Presentation mode
Problem by Mr. H

Solution

In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.
Assign this problem
Click here to assign this problem to your students.

Similar Problems

Three Digit Difference

Two positive integers, A and B, both have 3 digits. A is bigger than B. A – B is between 300 and 400. What is the value of A - B?

 

My Three Digits

I'm thinking of a three-digit number. The sum of my number's first and last digits is a perfect square. The sum of my number's first and second digits is also a perfect square. If my third digit is subtracted from my second digit, the result is 5. If my number is not a multiple of three, and it has no repeated digits, what is my number?

Two Digit Pattern Matching

How many two-digit numbers are there such that the digits match at least one of the following patterns:

  1. The digits are both multiples of three.
  2. Neither of the digits are multiples of two.
  3. The digits add to 8.
  4. The digits are perfect squares.

Happy New Year

Happy New Year! I am a four-digit year, and my last two digits are a perfect square. The sum of my first and third digits is a perfect square. My second digit is a perfect square. All my digits add to a perfect square.

If you subtract my first, second, and third digit from my last digit, you get a perfect square.

If you subtract my third digit from my first digit, you get a perfect square.

Oh, by the way, I'm a perfect square.

What year am I?

Digits in a Multiplication Problem

You must use each of the integers from 0 to 5 exactly once to fill in the blanks in the multiplication problem below.

_ _ _ x _ _ x _ = 

What is the largest possible value you can create?

Three Digit Number

I am thinking of a three-digit number. The sum of my digits is 17. Two of my digits add to 10, and two of my digits are the same. Find all possible values for my number.
 

All My Digits

All my digits are non-zero perfect squares. If you treat my first two digits as a two-digit number, and treat my last two digits as a two-digit number, the sum of these two numbers is also a perfect square. If I am a three digit number, what numbers could I be?

Fill in the blanks

In the addition problem below, some digits are missing. They have been replaced by x and y. Find the values of x and y.

3xy2 + 3y1 = 40x3

Three Digits with Difference

I’m a three digit number, and the sum of my digits is 13. My first two digits differ by 3, and my last two digits differ by 5. What numbers could I be?

Reverse Me

I'm a three digit number. Reverse my digits and subtract, and the result is 198. Reverse my digits and add, and the result is 1272.

What number am I?

Rhonda's Zip Code, Sum of Digits, Set of Five Digit Numbers, Back to Back, Coffee Math, I Have Three Digits, Five Digit Number, Three Digit Number, Fiona's Telephone Number, Three Digits, sum and product, Four Digit Number, Grapes on the Vine, Find the Number, The Middle Palindrome

Blogs on This Site

Reviews and book lists - books we love!
The site administrator fields questions from visitors.
Like us on Facebook to get updates about new resources
Home
Pro Membership
About
Privacy