Three Digits, sum and product
Pro Problems > Math > Number and Quantity > Number Theory > DigitsThree Digits, sum and product
I'm a three digit number. My first two digits multiply to 12, and my last two digits add to 14. What number am I?
Solution
In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.Similar Problems
Three Digit Difference
Two positive integers, A and B, both have 3 digits. A is bigger than B. A – B is between 300 and 400. What is the value of A - B?
Sum of Digits
Find the sum of all the integers between one and 100 which have 14 as the sum of their digits.
Two Digit Pattern Matching
How many two-digit numbers are there such that the digits match at least one of the following patterns:
- The digits are both multiples of three.
- Neither of the digits are multiples of two.
- The digits add to 8.
- The digits are perfect squares.
Palindrome Addition
Find the smallest positive integer which must be added to 30504 so that the resulting number is a palindrome.
Note: a palindrome is a number in which the digits would read the same forward and backward.
Three Digit Number
I am thinking of a three-digit number. The sum of my digits is 17. Two of my digits add to 10, and two of my digits are the same. Find all possible values for my number.
Three Digits with Difference
I’m a three digit number, and the sum of my digits is 13. My first two digits differ by 3, and my last two digits differ by 5. What numbers could I be?
The Middle Palindrome
If all the palindromes between 100 and 1000 were listed in order from smallest to largest, what is the average of the two numbers in the middle of the list?
NOTE: A palidrome is a number which reads the same forward and backward. For example, if you reverse the digits of 97279, you still have 97279.
I Have Three Digits
I am a three digit number, and the following things are true about me:
- The product of two of my digits is 8.
- The sum of my digits is 13.
- My first digit is four times my second digit.
What number am I?
Back to Back
X is a three-digit number. Y is the number obtained when the digits of X are reversed. Z is the six-digit number obtained by writing X and Y back to back, with X written first. W is the six-digit number obtained by writing Y and X back to back, with Y written first. What is the largest number which the sum of Z and W must be divisible by?
Fill in the blanks
In the addition problem below, some digits are missing. They have been replaced by x and y. Find the values of x and y.
3xy2 + 3y1 = 40x3
