Angle Bisector
Pro Problems > Math > Geometry > TrianglesAngle Bisector
In the diagram shown,
m ∠DCF = 80
m ∠ACF = 30
m ∠FBD = 50.
If segment BF bisects ∠ABD, find m ∠BAC.
Solution
In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.Similar Problems
Triangle in a Square
If the perimeter of the triangle (in linear units) is equal to the area of the triangle (in square units), what is the length of the side of the square?
Angle Measure
Line segment AB is intersected by segment DC, with D on AB, between A and B.
In triangle ADC, m∠ADC = 30º + x and m∠DAC = 50º
In triangle ABC, m∠ACB = 115º + x
In triangle CDB, m∠CDB = 140º + x
Find m∠CBD.
Angles in a Triangle
In a triangle, the measure of the largest angle is 12 less than the sum of the measures of the other two angles. The largest angle is also 52 more than the twice the middle angle decreased by three times the smallest angle. What is the largest angle measure?
Forty-five and Thirty
Two of the angles of a triangle are 45 degrees and 30 degrees. The altitude from the third angle has length 15 units. What is the triangle's area?
Quadratic Triangle
The angles in a triangle have measures x2 - 5, 2x + 18, and x + 37. What is the measure of the largest angle in the triangle?
Triangle Variables
An isosceles triangle is a triangle in which two of the angles have the same measure. In an isosceles triangle, the angle measures are 30 + x, 62 - x, and 10 + 2x + y. What are the possible numeric values for the measures of the angles?
Triangle and Rectangle
In the diagram displayed, the triangle splits the rectangle into three similar triangles. Find the value of AD2 divided by the product of DE and EC.
Split Triangle
Segment AD is drawn in triangle ABC, with D on side BC. Given the following information, determine the measure of angle ADB.
measure of angle BAD = x
measure of angle CAD = 2x
measure of angle ADC = 2y
measure of angle ABD = y
measure of angle ACD = x + y
Two Triangles with Angle Measures
In a triangle, the angles measures are: 3x + 44, x, and 2x - 20. In a second triangle, two of the angle measures are x + 20 and 2x - 5. What is the measure of the third angle?
Three Triangles
The angles in a triangle have measures x, x + 10, and y.
The angles in a second triangle have measures x + y, 40, and 50.
The angles in a third triangle have measures x – y, 40, and z.
What is the value of z?