Back to Back
Pro Problems > Math > Number and Quantity > Number Theory > DigitsBack to Back
X is a three-digit number. Y is the number obtained when the digits of X are reversed. Z is the six-digit number obtained by writing X and Y back to back, with X written first. W is the six-digit number obtained by writing Y and X back to back, with Y written first. What is the largest number which the sum of Z and W must be divisible by?
Solution
In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.Similar Problems
Sum of Digits
Find the sum of all the integers between one and 100 which have 14 as the sum of their digits.
Reverse Me
I'm a three digit number. Reverse my digits and subtract, and the result is 198. Reverse my digits and add, and the result is 1272.
What number am I?
Rhonda's Zip Code
Rhonda’s zip code has five digits. Two of the digits are the same. One of the digits is three times another digit. Three of the digits are consecutive integers. The zip code starts with a zero. What is the largest possible sum for the digits of Rhonda’s zip code?
Three Digit Number
I'm thinking of a three-digit number. The sum of its digits is between 15 and 20 exclusive. The product of my first and last digits is 18. I don't have any repeated digits, and my digits are not in either ascending order or descending order. I am a multiple of three, but not of six. What number am I?
I Have Three Digits
I am a three digit number, and the following things are true about me:
- The product of two of my digits is 8.
- The sum of my digits is 13.
- My first digit is four times my second digit.
What number am I?
Three Digit Number
I am thinking of a three-digit number. The sum of my digits is 17. Two of my digits add to 10, and two of my digits are the same. Find all possible values for my number.
Five Digit Number
The sum of the digits of a three digit number is eighteen. The first digit is three more than the last digit. There is a repeated digit in the number. What are all possible values of the number?
Coffee Math
Johann was writing out a math problem when he spilled some coffee on his paper. The result was that some digits were covered up, as shown below.
♦7♦ + ♦♦9 ----- 50♦
If all but one of the hidden areas have the same digit, find all possible values for the sum of the hidden digits
Set of Five Digit Numbers
S is the set of five-digit numbers such that the digits are in ascending order, there are no repeated digits, the sum of the first two digits is equal to the third digit, and the sum of the third and fourth digits is equal to the two more than the fifth digit. How many elements are in the set S? (Note that the leading digit cannot be a zero).
The Middle Palindrome
If all the palindromes between 100 and 1000 were listed in order from smallest to largest, what is the average of the two numbers in the middle of the list?
NOTE: A palidrome is a number which reads the same forward and backward. For example, if you reverse the digits of 97279, you still have 97279.