Three Digits with Difference
Pro Problems > Math > Number and Quantity > Number Theory > DigitsThree Digits with Difference
I’m a three digit number, and the sum of my digits is 13. My first two digits differ by 3, and my last two digits differ by 5. What numbers could I be?
Solution
In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.Similar Problems
Four Digit Number
I am a four digit number.
The sum of my digits is 20.
The product of my digits is 600.
The difference between my first two digits is 2, and the sum of my middle two digits is 11.
What number am I?
Reverse Me
I'm a three digit number. Reverse my digits and subtract, and the result is 198. Reverse my digits and add, and the result is 1272.
What number am I?
Find the Number
My digits are all odd, and they add to 18. My first digit is four more than my last digit, the product of my digits is between 300 and 315, and I am less than 100,000. If my digits are not in descending order, what numbers could I be?
Five Digit Number
The sum of the digits of a three digit number is eighteen. The first digit is three more than the last digit. There is a repeated digit in the number. What are all possible values of the number?
Digits in a Multiplication Problem
You must use each of the integers from 0 to 5 exactly once to fill in the blanks in the multiplication problem below.
_ _ _ x _ _ x _ =
What is the largest possible value you can create?
Three Digit Number
I'm thinking of a three-digit number. The sum of its digits is between 15 and 20 exclusive. The product of my first and last digits is 18. I don't have any repeated digits, and my digits are not in either ascending order or descending order. I am a multiple of three, but not of six. What number am I?
All My Digits
All my digits are non-zero perfect squares. If you treat my first two digits as a two-digit number, and treat my last two digits as a two-digit number, the sum of these two numbers is also a perfect square. If I am a three digit number, what numbers could I be?
Back to Back
X is a three-digit number. Y is the number obtained when the digits of X are reversed. Z is the six-digit number obtained by writing X and Y back to back, with X written first. W is the six-digit number obtained by writing Y and X back to back, with Y written first. What is the largest number which the sum of Z and W must be divisible by?
Happy New Year
Happy New Year! I am a four-digit year, and my last two digits are a perfect square. The sum of my first and third digits is a perfect square. My second digit is a perfect square. All my digits add to a perfect square.
If you subtract my first, second, and third digit from my last digit, you get a perfect square.
If you subtract my third digit from my first digit, you get a perfect square.
Oh, by the way, I'm a perfect square.
What year am I?
Fill in the blanks
In the addition problem below, some digits are missing. They have been replaced by x and y. Find the values of x and y.
3xy2 + 3y1 = 40x3