Digits in a Multiplication Problem
Pro Problems > Math > Number and Quantity > Number Theory > DigitsDigits in a Multiplication Problem
You must use each of the integers from 0 to 5 exactly once to fill in the blanks in the multiplication problem below.
_ _ _ x _ _ x _ =
What is the largest possible value you can create?
Solution
In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.Similar Problems
Three Digits with Difference
I’m a three digit number, and the sum of my digits is 13. My first two digits differ by 3, and my last two digits differ by 5. What numbers could I be?
Happy New Year
Happy New Year! I am a four-digit year, and my last two digits are a perfect square. The sum of my first and third digits is a perfect square. My second digit is a perfect square. All my digits add to a perfect square.
If you subtract my first, second, and third digit from my last digit, you get a perfect square.
If you subtract my third digit from my first digit, you get a perfect square.
Oh, by the way, I'm a perfect square.
What year am I?
Sum of Digits
Find the sum of all the integers between one and 100 which have 14 as the sum of their digits.
Five Digit Number
The sum of the digits of a three digit number is eighteen. The first digit is three more than the last digit. There is a repeated digit in the number. What are all possible values of the number?
Four Digit Number
I am a four digit number.
The sum of my digits is 20.
The product of my digits is 600.
The difference between my first two digits is 2, and the sum of my middle two digits is 11.
What number am I?
Three Digit Number
I'm thinking of a three-digit number. The sum of its digits is between 15 and 20 exclusive. The product of my first and last digits is 18. I don't have any repeated digits, and my digits are not in either ascending order or descending order. I am a multiple of three, but not of six. What number am I?
Back to Back
X is a three-digit number. Y is the number obtained when the digits of X are reversed. Z is the six-digit number obtained by writing X and Y back to back, with X written first. W is the six-digit number obtained by writing Y and X back to back, with Y written first. What is the largest number which the sum of Z and W must be divisible by?
Two Digit Pattern Matching
How many two-digit numbers are there such that the digits match at least one of the following patterns:
- The digits are both multiples of three.
- Neither of the digits are multiples of two.
- The digits add to 8.
- The digits are perfect squares.
Three Digits, sum and product
I'm a three digit number. My first two digits multiply to 12, and my last two digits add to 14. What number am I?
Fiona's Telephone Number
When Shrek asks Fiona for her telephone number, Fiona is a bit coy about it, and tells Shrek the following information:
- My telephone number has 10 digits.
- There are no repeated digits in my telephone number.
- The first three digits are in ascending order.
- The second three digits are in descending order.
- Both the last four digits and the last two digits are multiples of sixty.
- My last four digits are not a multiple of 43.
- My first three digits are the square of an integer less than twenty.
- The sum of the second three digits is 14.
What number should Shrek dial?