Games
Problems
Go Pro!

Rhonda's Zip Code

Pro Problems > Math > Number and Quantity > Number Theory > Digits
 

Rhonda's Zip Code

Rhonda’s zip code has five digits. Two of the digits are the same. One of the digits is three times another digit. Three of the digits are consecutive integers. The zip code starts with a zero. What is the largest possible sum for the digits of Rhonda’s zip code?

Presentation mode
Problem by Mr. Twitchell

Solution

In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.
Assign this problem
Click here to assign this problem to your students.

Similar Problems

My Three Digits

I'm thinking of a three-digit number. The sum of my number's first and last digits is a perfect square. The sum of my number's first and second digits is also a perfect square. If my third digit is subtracted from my second digit, the result is 5. If my number is not a multiple of three, and it has no repeated digits, what is my number?

Four Digit Number

I am a four digit number.

The sum of my digits is 20.

The product of my digits is 600.

The difference between my first two digits is 2, and the sum of my middle two digits is 11.

What number am I?

Set of Five Digit Numbers

S is the set of five-digit numbers such that the digits are in ascending order, there are no repeated digits, the sum of the first two digits is equal to the third digit, and the sum of the third and fourth digits is equal to the two more than the fifth digit. How many elements are in the set S? (Note that the leading digit cannot be a zero).

Happy New Year

Happy New Year! I am a four-digit year, and my last two digits are a perfect square. The sum of my first and third digits is a perfect square. My second digit is a perfect square. All my digits add to a perfect square.

If you subtract my first, second, and third digit from my last digit, you get a perfect square.

If you subtract my third digit from my first digit, you get a perfect square.

Oh, by the way, I'm a perfect square.

What year am I?

Palindrome Addition

Find the smallest positive integer which must be added to 30504 so that the resulting number is a palindrome.

Note: a palindrome is a number in which the digits would read the same forward and backward.

 

Digits in a Multiplication Problem

You must use each of the integers from 0 to 5 exactly once to fill in the blanks in the multiplication problem below.

_ _ _ x _ _ x _ = 

What is the largest possible value you can create?

Three Digit Number

I am thinking of a three-digit number. The sum of my digits is 17. Two of my digits add to 10, and two of my digits are the same. Find all possible values for my number.
 

Fill in the blanks

In the addition problem below, some digits are missing. They have been replaced by x and y. Find the values of x and y.

3xy2 + 3y1 = 40x3

The Middle Palindrome

If all the palindromes between 100 and 1000 were listed in order from smallest to largest, what is the average of the two numbers in the middle of the list?

NOTE: A palidrome is a number which reads the same forward and backward. For example, if you reverse the digits of 97279, you still have 97279.

Reverse Me

I'm a three digit number. Reverse my digits and subtract, and the result is 198. Reverse my digits and add, and the result is 1272.

What number am I?

Back to Back, Three Digit Difference, Three Digits, sum and product, Sum of Digits, Three Digits with Difference, Find the Number, All My Digits, Five Digit Number, Two Digit Pattern Matching, Grapes on the Vine, Three Digit Number, Fiona's Telephone Number, I Have Three Digits, Coffee Math

Blogs on This Site

Reviews and book lists - books we love!
The site administrator fields questions from visitors.
Like us on Facebook to get updates about new resources
Home
Pro Membership
About
Privacy