Games
Problems
Go Pro!

Rhonda's Zip Code

Pro Problems > Math > Number and Quantity > Number Theory > Digits
 

Rhonda's Zip Code

Rhonda’s zip code has five digits. Two of the digits are the same. One of the digits is three times another digit. Three of the digits are consecutive integers. The zip code starts with a zero. What is the largest possible sum for the digits of Rhonda’s zip code?

Presentation mode
Problem by Mr. Twitchell

Solution

In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.
Assign this problem
Click here to assign this problem to your students.

Similar Problems

Two Digit Pattern Matching

How many two-digit numbers are there such that the digits match at least one of the following patterns:

  1. The digits are both multiples of three.
  2. Neither of the digits are multiples of two.
  3. The digits add to 8.
  4. The digits are perfect squares.

Three Digits with Difference

I’m a three digit number, and the sum of my digits is 13. My first two digits differ by 3, and my last two digits differ by 5. What numbers could I be?

I Have Three Digits

I am a three digit number, and the following things are true about me:

  1. The product of two of my digits is 8.
  2. The sum of my digits is 13.
  3. My first digit is four times my second digit.

What number am I?

Reverse Me

I'm a three digit number. Reverse my digits and subtract, and the result is 198. Reverse my digits and add, and the result is 1272.

What number am I?

Fiona's Telephone Number

When Shrek asks Fiona for her telephone number, Fiona is a bit coy about it, and tells Shrek the following information:

  • My telephone number has 10 digits.
  • There are no repeated digits in my telephone number.
  • The first three digits are in ascending order.
  • The second three digits are in descending order.
  • Both the last four digits and the last two digits are multiples of sixty.
  • My last four digits are not a multiple of 43.
  • My first three digits are the square of an integer less than twenty.
  • The sum of the second three digits is 14.

What number should Shrek dial?

Happy New Year

Happy New Year! I am a four-digit year, and my last two digits are a perfect square. The sum of my first and third digits is a perfect square. My second digit is a perfect square. All my digits add to a perfect square.

If you subtract my first, second, and third digit from my last digit, you get a perfect square.

If you subtract my third digit from my first digit, you get a perfect square.

Oh, by the way, I'm a perfect square.

What year am I?

Four Digit Number

I am a four digit number.

The sum of my digits is 20.

The product of my digits is 600.

The difference between my first two digits is 2, and the sum of my middle two digits is 11.

What number am I?

Sum of Digits

Find the sum of all the integers between one and 100 which have 14 as the sum of their digits.

My Three Digits

I'm thinking of a three-digit number. The sum of my number's first and last digits is a perfect square. The sum of my number's first and second digits is also a perfect square. If my third digit is subtracted from my second digit, the result is 5. If my number is not a multiple of three, and it has no repeated digits, what is my number?

Three Digit Number

I'm thinking of a three-digit number. The sum of its digits is between 15 and 20 exclusive. The product of my first and last digits is 18. I don't have any repeated digits, and my digits are not in either ascending order or descending order. I am a multiple of three, but not of six. What number am I?
 

All My Digits, Coffee Math, Grapes on the Vine, The Middle Palindrome, Digits in a Multiplication Problem, Find the Number, Three Digit Difference, Set of Five Digit Numbers, Palindrome Addition, Three Digits, sum and product, Five Digit Number, Back to Back, Three Digit Number, Fill in the blanks

Blogs on This Site

Reviews and book lists - books we love!
The site administrator fields questions from visitors.
Like us on Facebook to get updates about new resources
Home
Pro Membership
About
Privacy